
Pergamon 

www.elsevier.com/locate/jappmathmech 

J. Appl. Maths Mechs, Vol. 65, No. 5, pp. 835-844,2001 
8 2002 Elsevier Science Ltd 

PII: S0021-8928(01)00089-2 
All rights reserved. Printed in Great Britain 

0021-8928/01/$-see front matter 

CHARACTERISTIC SURFACES IN GAS FLOWS-f 

S. P. BAUTIN 

Ekaterinburg 

e-mail: sbautin@math.usatt.r 

(Received 14 September 2.000) 

It is shown that weak discontinuities of three types may occur in flows of an inviscid heat-conducting gas: on sonic lines, on contact 
surfaces and on a thermal wave front. Weak discontinuities may occur in flows of a viscous non-heat-conducting gas, but only 
of one type - contact weak discontinuities. 0 2002 Elsevier Science Ltd. All rights reserved. 

It is well know that the system of gas dynamic equations (for an inviscid non-heat-conducting 
compressible continuous medium) is of hyperbolic type and therefore, in particular, admits of gas flows 
with weak discontinuities on sonic lines or contact characteristics [l, 21. This property enables one to 
solve complex and important problems (see, e.g. [3]). The complete system of Navier-Stokes equations 
[4], which describes viscous heat-conducting gas flows, is of mixed type and also admits of flows with 
weak discontinuites, either on a thermal wave front [.5] or on a contact surface [6], The investigation 
of flows, both of an inviscid heat-conducting gas [7,8] and of a viscous non-heat-conducting gas [9] is 
of interest in relation to the problem of developing high energy densities [lo]. 

To describe thermodynamically perfect gas flows whose equations of state are 

p = RpT, e = cvoT; R, cm = const > 0 (1) 

@ is the pressure, p is the density, T is the temperature and e is the internal energy), one can take 
p and T as the independent thermodynamic variables. All the other thermodynamic parameters may then 
be expressed in terms of these two via the fundamental thermodynamic identity TdS = de + pd (l/p), 
where S is the entropy. In particular, the square of the speed of sound is c2 = (dplap) Is_,,nst = Ry/T, where 
y = 1 + R/cvo > 1 is the adiabatic exponent of the gas. For gas flows with equations of state (1) we shall 
henceforth consider the complete system of Navier-Stokes equations in the form introduced in [ll]. 

We will first investigate the case of an inviscid heat-conducting gas: the coefficients of dynamic and 
volume viscosity p and cl’ are set equal to zero. Then the system of equations for the flow is 

ap -+uuVp+pdivu=O at 

aT 
-+u.vT+(y-1)Tdivu at =-)~cAT+V~.VT) 

where t is the time, u = {ul, u2, u3} is the velocity vector of the gas and x = x (p, T) is the thermal 
conductivity. 

This system may be written in the standard way in terms of dimensionless variables by introducing 
suitable ositive constants L,, p* and T.; the unit of velocity is taken to be the speed of sound U* = 
C* A = vRyT., so that the dimensionless speed of sound is c = @. 

We will now determine when a surface C in the space of the variables t, xi (j = 1,2,3) is a characteristic 
surface of system (1). To do this we will assume that the surface C is specified in the form 

XI = w(r. x2, x3) 

where the function w(t, x2, x3) is assumed to have finite first-order derivatives. 
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We make the change of variables 

T=t, O=$l(t,X,,X*,Xj), ci=Xi, i=2,3 

cp(t,x,,X~JJ)=X, -W(LX*J3) 

The Jacobian of this transformation is equal to unity. Under this change of variables, the surface C: 
cp(t, x1, x2, xs) = 0 becomes the new coordinate plane 8 = 0. Using the formulae for the transformation 
of derivatives 

_&=_.t+a(pd a a _L=-?-+*a, i=23 -=- 

at a7 at ae' ax, ae’ axi aci axi ae ’ 

we can write system (2) in the form 

ap ap 3 ap ~+(Wkg+ .T u;-+P 
, 2 ati 

ax 
+aT 

where 

Dcp= x+X u.-; afP 3 acp if%=+ (z5 5 ) acp _* acp 
j=l ‘axi at 

T * ,, 29 --, 

24 
~=-wci(7,5,,52), i=2,3 

I 

We introduce the notation 

Z=,l a2T aT' ar_,; a2T aT' a2r aT' =_ 
ae 

vs= -5 agi- ’ aeat, agi ’ ag’=agi’ i=2v3 

in system (3) and add three more equations for the three new unknown functions Ti (j = 1,2,3): 

aT 
--/, -=-, , 

aT’ ar’ i=2 3 

ae agi 

(3) 

This yields a quasi-linear system of equations (too cumbersome to be given here) involving only the 
first-order derivatives of the vector of unknown functions U with eight components p, Uj, T, TJ (j = 1, 
2,3). The determinant of the matrixA,,, which is the coefficient of the vector au/&3 (also too cumbersome 
to be given here), is not only easily evaluated but also factorized: 
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Thus, characteristics can only exist in an inviscid thermally conducting gas flow if one of the three 
factors vanishes, that is, one of the following three equalities must hold 

x=0, L%p=o, (Dcp)+D=O 

If the flow satisfies the conditions 

464 T) 17=0= 0, 4P. v IT>O> 0 

it may be treated as a thermal wave propagating on a cold background. 
Equating the second factor to zero gives a contact surface c”. 
Equating the third factor to zero gives two differential equations, which differ in only one sign and 

can therefore be written uniformly: 

-+c u.-*‘J%Lo acp 3 acp 
at j=l ’ aXj fi 

Thus, in unsteady inviscid thermally conducting gas flows of any dimension there are always two 
characteristics, henceforth denoted by Cc, also known as sonic lines. The propagation velocity of these 
characteristics (relative to the flow under consideration) in a heat-conducting gas is 

c,=m+clfi (4) 
and is independent of the thermal conductivity. Here c is the propagation velocity of the sonic lines of 
an inviscid non-heat-conducting gas. Consequently, the speed of sound in a heat-conducting gas is strictly 
less than in a non-heat-conducting gas. 

This explains the effect, observed in computations [12], that a compression wave front in a heat- 
conducting gas “lags behind” the analogous compression wave front in a non-heat-conducting gas. 

Remark. Naturally, the above considerations are also possible in the case of other equations of state 
p = p(p, 7’). Then the velocity at which tunic lines propagate in heat-conducting gas flows will be 
given by the formula C&P, T) = G~~~~T)/ap. In gas dynamics one sometimes considers (as, e.g., in 
[13]), the case of isothermal flows, when it is assumed that, because of infinite thermal conductivity, 
the gas temperature instantaneously becomes equal throughout the volume under consideration, and 
in such flows, therefore, T = const. In that case the energy equation is omitted, while the remaining 
equations (continuity and conservation of momentum) constitute a hyperbolic system in which the 

propagation velocity of sonic lines (“the isothermal speed of sound”) is (em, T)/ap) 1 T=const. In this 
paper, unlike the isothermal case, we consider the general situation with T f const and do not omit 
the energy equation; the thermal conductivity is assumed to be finite and strictly positive. Naturally, 
the “isothermal speed of sound” is identical with the speed of sound c,(p, T) in flows with finite thermal 
conductivity if one puts T = const in c,(p, T). In [14], on the assumption that the thermal conductivity 
is large but finite, a particular solution of the linearized system (3) was constructed in the form of a 
travelling wave; it was then shown by asymptotic analysis of the dispersion relation that in the 
low-frequency case such a wave travels at the “adiabatic speed of sound” (&p(p,S)lap) (S=comt, while 

in the high-frequency case one obtains the “isothermal speed of sound” (&p(p, T)/ap) 1 T=const. In contrast 
to this result, it was shown above that, for any positive value of the thermal conductivity, system (3) 
(unlinearized) has sonic lines propagating at a velocity c,(p, T), irrespective of the form of the selected 
solution of system (3). We also observe that the system obtained by linearizing system (3), relative to 
the solution describing uniform rest at constant parameters p = pm, T = T,, also has sonic lines, whose 
propagation velocity is naturally constant and equal to c,(p, T) 1 p=p 

. In our further analysis of heat-conducting gas flows in the neig bour ood of the characteristics OR’ T=T$ 
C:, in order to avoid complications, we shall consider the case of uniform plane-symmetric flows: 
ajaw, = a/ax, = u2 = u3 = 0, change the notation tax, = x, u1 = u and change variables: 
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7 = t, 8 = x - v(t) 

To simplify the notation, we will retain the previous notation for the variable t. System (3) may then 
be written in the form 

q + (U - w’)T, + (y - 1 )Tue = ; (xqe + ~~~~~~ + xrT;) 

In order for the axis 8 = 0 to be one of the characteristics C;, the functionx = yt(t) must satisfy one 
of the two differential equations 

Derivatives issuing from the characteristics Cz will be denoted by 

fk(t)=~“~(t,~)/&+ l,+a, k=0,1,2 ,...; f =p,ti,T 

Let us suppose that one of the characteristics is defined in terms of a function v(t): Cc: x = w(t), and 
that the values of all the unknown functions and (because of the form of system (5)) the thermal flow 
Txlc; = To lezo on that characteristic are also given: 

P lf+o= Pow > 0, l4 lc+o= 4Jo (6) 

T le=o= T,(t) > 0. 7-i-i lo=,,= 6 0) 

Then 

tl()-)J~=T&tiy#O (7) 
If we put 8 = 0 in system (5) and takes relations (6) and (7) into consideration, one obtains the 

following results. The first equation is equivalent to the relation 

PI =+(Pou, +P~)~~ (8) 

A linear combination of the first two equations (the first equation is multiplied by +JToI’yIps and the 
product added to the second) yields 

q =qrPidP, -YUb (9) 

Equation (9) is an additional restriction, superimposed on condition (6); it is a necessary condition 
for the problem with data on a characteristic to be solvable [3, 151. In our case the characteristic in 
question is C$. The third equation of system (5) with 8 = 0 uniquely defines the second derivative of 
the temperature with respect to 8: 

In this and the following formulae, the subscript 0 on the thermal conductivity and its partial derivatives 
with respect to p and T means that these functions are considered at p = PO(t), T = T,(t). 

If we differentiate the first two equations of system (5) with respect to 8, put 8 = 0 and take the form 
off0 into consideration, then the same linear combination of these equations yields the transport equation 
for u,(t): 

u; + u; + A(t)u, + B(t) = 0 (10) 



Characteristic surfaces in gas flows 839 

The functions A(t) and B(t) are expressed in terms off&) and are too cumbersome to be reproduced 
here. 

Equation (10) is the general Riccati equation, which is not integrable in quadratures for arbitrary 
A(t) and B(t). Since Eq. (10) is non-linear, some of its particular solutions become infinite at finite values 
oft. This property of the solutions of the transport equations is known in gas dynamics as the gradient 
catastrophe (see e.g., [16]). 

If constant values of the unknown functions are given on the characteristic C; 

POW = PCJ-J = const > 0, u,(t) = 0, T,(t) = T,, = const > 0 

then, first, the following values are also uniquely defined on C: 

T,(t) = 0, T2(t) = au,(t), a = (y - l)paaT, /x0 > 0 

and, second, in Eq. (lo), 

A(r) = p, p = o(l(2y) > 0; B(t) = 0 

In that case Eq. (10) has a particular solution 

UI (t) = PUlO 

(ulo + PQ’ - q0 ’ UI (0 l,=o= qo 

(11) 

(12) 

(13) 

And if, for example, ulo c 0, ulo + p < 0, then the onset of the gradient catastrophe occurs at a time 

t. =-J-In 
! 1 

u’” > 0 - 
P UIO + P 

The coefficient of ui in (S), as well as that of its derivative in (lo), do not vanish. This makes it possible, 
first, to write a transport equation for p1 as well, and, second, to establish the existence of flows in 
the neighbourhood of the characteristics C:. 

Theorem 1. Suppose initial data (6) satisfying conditions (7) and (9) are given on a characteristic C; 
of system (5) and one of the following conditions holds: either 

w-w Lo= pow, pow II&o= pa(r) I,=() (14) 

or 

~0.0) I,=~= u”m d?e) iezo= ~~(0 I,=~ (15) 

Then, if all input data are analytic in a neighbourhood of the point (t = 0, 8 = 0), problems (5), (6), 
(14) and (5), (6) (15) have unique analytic solutions. 

The gist of the problems formulated in this theorem is to derive given distributions at time t = 0 
of either the density p = p” or the velocity u = u” of the gas, which continuously approximate 
the background flow across a weak discontinuity CF. The proof of Theorem 1 will not be given here, 
since it essentially reduces these problems to a characteristic Cauchy problem of standard form 
[3,15], and in the main duplicates the proof of the analogous facts for the system of equations of gas 
dynamics [17]. 

It also follows from relation (7) that when T > 0 the characteristic C: and trajectory of motion of 
the particle (which may be understood as the trajectory of motion of an impermeable piston) never 
touch one another. Consequently, one can formulate the problem of the smooth motion of an 
impermeable piston. 

Theorem 2. Suppose initial data (6) satisfying conditions (7) and (9) are given on a characteristic C: 
of system (5) and the following condition holds 

u(t,@ Lp(,)-yr(,) =x;(t), XJO) = w(O), u,(O) = x;(o) (16) 
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Then if all the input data are analytic in the neighbourhood of the point (t = O,f3 = 0), then a unique 
analytic solution of problem (5), (6), (16) exists. 

Condition (16) stipulates that a piston which begins to move at time t = 0 from the point x = 
w(O), moving smoothly in the gas according to a law x = xJt). does not leak: the piston velocity at 
time c = 0 equals the gas velocity at the piston. The proof of this theorem will also be omitted, 
since it largely duplicates that of the corresponding theorem for the system of equations of gas dynamics 

P81* 
Theorems 1 and 2 can be extended to the case of three-dimensional unsteady flows. 
Since the solution of the problem of a smoothly moving piston is unique, it follows that the conditions 

formulated in Theorem 2 uniquely define the entire gas flow from the piston to the characteristic Cc, 
so that the temperature and heat flux at the piston itself are uniquely defined. It is by no means certain 
that these values will be identical with any prescribed ones, e.g., a constant temperature or zero heat 
flux at the piston. This is illustrated by the following argument. 

Suppose we are given a uniform heat-conducting gas at rest, with parameters (ll), and a sonic line 
therein, say C:, propagating from left to right: x = QT,,,,/yt + w(O), produced when an impermeable 
piston moves smoothly (x;(O) = 0, xi(O) > 0) into the gas. Such a piston creates a compression wave: 
uJc; < 0, pX Ic; < 0. But it then follows from (12) that T, < 0, and at small t the gas temperature 
throughout the region of the compression wave, including the piston, will be less than the temperature 
of the uniform background through which the characteristic C: is propagating. Thus, simultaneously 
with the compression of the gas, heat will also escape from the gas through the piston. But if the 
compressing piston is thermally insulated, or if heat is supplied through it to the gas, then of necessity 
one will have the inequality TX 1 c; > 0. However, by (9), conditions (11) will then fail to hold on C: - 
the background flow will no longer be uniform and at rest. This conclusion also follows from general 
physical considerations: the propagation of heat will overtake the characteristic Cz, which is moving 
at a finite velocity (4), it will modify the gas parameters ahead of the characteristic and will thus influence 
its propagation velocity. At the same time, computations of compression waves in a heat-conducting 
gas show [12] that the front of a weak discontinuity is nevertheless preserved, as follows from the presence 
of Cz-characteristics in heat-conducting gas flows. 

The formulae and arguments presented here constitute concrete mathematical confirmation of the 
general conclusion that solutions of system (2) take into account both mechanisms by which disturbances 
are transmitted: by means of elastic interaction and by means of thermal conductivity, for each of which 
phenomena there is a specific velocity (finite and infinite, respectively) at which the disturbances 
propagate. 

Returning to system (2), let us consider the contact surface c” defined by the equation 

acp 3 a9 -+c ui-=o 
af +, axi 

As shown previously, a contact surface in inviscid heat-conducting gas flows is a characteristic of 
multiplicity two. As the dimensionality of the flow - the sum of the dimension of the space of independent 
variables and the number of unknown functions - is reduced, the multiplicity of the characteristic also 
decreases: if d/&s = u3 = 0, the multiplicity is one; if a/&, = d/ax3 = u2 = u3 = 0, a contact surface in 
inviscid heat-conducting gas flows is not a characteristic. As is well known, in the case of the system of 
equations of gas dynamics, the contact surface is a characteristic of multiplicity three; as the dimension- 
ality of the problem decreases this multiplicity also decreases, and in the case of unsteady potential 
isentropic flows the surface is no longer a characteristic [l]. If one reduces only the dimension of the 
space of independent variables but not the number of unknown functions (for example, if 
a/ax3 = 0 but u3 f 0), the multiplicity of the contact surface does not change. 

To avoid unnecessary complication, the gas flow in the neighbourhood of a contact surface is 
considered in the case when a/ax3 = u3 = 0. One then uses the notation u1 = U, u2 = u, x1 = x,x2 = y, 
system (3) is somewhat simplified and rewritten in an appropriate form. As before, we introduce the 
notation& for the values of the k-th derivatives with respect to 0 at 8 = 0. 

Suppose we are given a function w(t, y) defining a characteristic C”: x = w(t, y); suppose we are also 
given the values of all the unknown functions and the heat flux T, 1 c = To ( 8=o on the characteristic: 
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Then, first, the Co-characteristic itself is given by the equation 

uo-Wr-W~~o =0 

Second, the first equation of system (5) at 8 = 0 yields the equation 

Third, a linear combination of the second and third equations at 8 = 0 leads to the necessary condition 
for a Cauchy problem with data on the characteristic Co to be solvable 

vpor +vor +vow~~o~ +v,$+ $~+Toc)=O 

This condition is an additional restriction, superimposed on initial data (17), which (unlike condition 
(9) for C:) does not involve the heat flux on c”. 

The transport equation - the equation for the derivative ui(z, 5) issuing from the surface Co - is 
obtained from the appropriate linear combination of the second and third equations, after first 
differentiating them with respect to 8 and considering them at 8 = 0 

where 

(the function E(r, 5) is too cumbersome to be reproduced here). Since the transport equation is a first- 
order linear partial differential equation, the singularities of its solutions are known [19]. 

Finally, the last possibility for a weak discontinuity to exist in inviscid heat-conducting gas flows: 
continuous adherence of the cold background (in which T = x = 0) to a thermal wave (in which 
T > 0 and x > 0). For simplicity, this situation will be considered in the case of two-dimensional 
symmetric flows satisfying system (5). 

Theorem 3. Suppose the thermal conductivity x(p, T) satisfies the conditions 

X(P* T) Ir=o= 0, Xp(P7 r> IT=O= 0, +p, T) IT& 0 (18) 

and system (5) has a solution 

p=poo=const>O, ~4~0, T=O (19) 

henceforth referred to as the cold uniform background. If the given function x = w(t) is such that 

w’(0) * 0 (20) 

then, provided all the input data are analytic in some neighbourhood of the point t = 0, x = w(O), the 
problem formulated above has another analytic solution -besides (19) -which continuously approxi- 
mates it on the line 8 = 0, that is, forx = y(t). 

This second solution is constructed as an infinite series 

fke) = kzo .m$. f =p,u,T 
(21) 

where the quantities po, u. and To are taken equal to their respective values for the cold uniform 
background, i.e. 

p. = pm, u. = 0, To = 0 
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We put 8 = 0 in system (5) and take into consideration the form of the zeroth coefficients and condition 
(20). As a result we obtain three relations 

The last equality is possible in two cases: r, = 0 or 

(22) 

The case Tt = 0 leads to solution (19), so that henceforth we will consider only the non-zero value of 
(22) for Ti. This value uniquely defines u1 and PI, which are also not zero. 

We now differentiate each equation of system (5) k times with respect to 8, set 8 = 0 and take the 
values offi into consideration. This yields relations 

-W’Pk+, +Po~~k+l = Fk* -w'"k+l +- k+I = ‘% 'T 
Y 

7; +‘l”Poo q+, =Hk 1 
where Fk, Gk and Hk depend on f[ (1 = 0, 1, . . . , k). By (22), the bracketed expression in the last equation 
is equal to -(k + 1) qPoo. Hence these relations uniquely define f k+l, so that series (21) has been formally 
constructed. To prove that the series converges, we construct a majorant problem with an analytic 
solution. This construction is identical with that of the analogous majorant problem in the case of a 
viscous heat-conducting gas flow [5] and will not be reproduced here. 

The analytic solution (21) thus obtained is a thermal wave (TW) propagating through the cold uniform 
background (19) and continuously coinciding with it at the TW front, whose trajectory of motion is 
given by the function 

x = V(l) (23) 

It follows from (22) that the sign of Ti is the reverse of the sign of w’. If w’ > 0, the TW front moves 
to the right through the cold background. Since then T, < 0, the TW itself (in which T > 0) lies to the 
left of the front (23) and the cold background to its right. if J/ < 0, the TW front propagates to the 
left through the cold background, TI > 0, the Tw, in which T > 0, lies to the right of the curve (23), 
and the cold background to its left. It follows from the formulae for u1 and P1 that the TW is a 
compression wave: behind the wave front there is an increase not only in temperature but also in the 
density of the gas and the magnitude of its velocity. 

Theorem 3 admits of a natural extension to the case of a three-dimensional TW propagating in any 
cold flow - a solution of system (2) with T = 0. A TW also exists when x = x0 v’T, x0 = const > 0. 

In conclusion, we will briefly consider the case of a viscous non-heatconducting gas. To that end, we equate 
the thermal conductivity to zero, x = 0, in the complete system of NavierStokes equations [ll]; for simplicity, 
we will assume that the viscosity coefficients are constant, the first being P = p. = const > 0 and the second 
p’ = 0. To further simplify the arguments, we will consider two-dimensional symmetric flows and take some 
curve (23) as the new coordinate axis 0 = 0. As a result, we obtain the system of equations 

PI+@--WPfJ+Pue=O 

(24) 

T + (u - w’)T, + (y - l)Tu, = y(y - 1)~~ -$ 
P 

If (23) is a contact curve, i.e., the trajectory of motion of some gas particle satisfies the equation 
q(t) = u(f, w(t)), then it follows directly from the form of system (24) that the 8 = 0 axis is a characteristic 
of multiplicity two. Under these conditions the determinant of the matrix which is the coefficient of 
the vector of derivatives issuing from the 8 = 0 axis is equal to -l.ts(u - #)=/p. 
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The initial data on the curve 8 = 0 for system (24) have the form 

P l&o= Pa(r) ’ 0, u ll3=0= u,(r) 

u, Is=,,= u,(t), 7-I,=,= T,(t) > 0 

where 

uo0) = V’(f) 

843 

(25) 

If we put 8 = 0 in system (24) and take initial conditions (25) into consideration, we obtain three 
equations: 

P;,+Poul=O 

T;+(y-l)T,u, =y(y-l)PoLu: 
PO 

The first and third equations are two necessary conditions for the problem to be solvable -two additional 
restrictions superimposed on the initial data, since the characteristic in question has multiplicity two 
[3,15]. The second equation uniquely defines u2 in terms of initial data (25) and a linear combination 
of Pl, Tl. 

If the first and third equations of (24) are differentiated with respect to 9 and we put 8 = 0 in 
them, then, taking relations (25) and (26) into consideration, we obtain a linear system of transport 
equations 

p; +q,wp, +q,o>7; =4(r) 

7;‘+%,wP, + a,,wi =b2W 

The functions uii(t), b,(t) (t, j = 1, 2) are determined by the initial data, but are too cumbersome to 
reproduce here. As is well known, the solutions of a linear system of ordinary differential equations 
may have singularities only at t values where the coefficients and right-hand sides of the equations have 
singularities. 

If the density is constant on the contact curve (23) that is 

PO(r) = PO0 = const > 0 

then necessarily 

ul (t) = 0, To(t) = T, = const > 0 

Then all the coefficients in the system of transport equations become constant: 

POOTOO, u a,, =- _& 

WO ‘2-W0 

u2, = (Y - l)GJ 

WO 

( u*2 = (Y - *)PooGo 

WO 

In the case when the system of transport equations is homogeneous (for example, if u. = const), the 
functions pt(t) and T,(t) are appropriate linear combinations of constants and exponential functions 
with exponent -Bt, where B = pooToo/po. 

Thus, as in viscous heat-conducting gas flows [6], the flow stabilization process (smoothing out 
of small disturbances) near a contact characteristic in a viscous non-heat-conducting gas is 
determined by the exponential function exp(-Bt), where the positive constant B is inversely proportional 
to cLo* 
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If the dimensionality of the problem is increased, the contact surface c” remains a characteristic, its 
multiplicity remains equal to two and there are no other characteristic surfaces in viscous non-heat- 
conducting gas flows. 

I wish to thank A. N. Kraiko for discussions and useful recommendations. 
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